Carbon Dioxide-Transition Metals Complexes. III. Rhodium(I)-CO₂ Complexes

M. ARESTA and C. F. NOBILE

Istituto di Chimica Generale ed Inorganica, Università, Via Amendola 173, Bari 70126, Italy Received July 4, 1977

Carbon dioxide activation via direct co-ordination to metal complexes can represent a way to CO_2 fixation [1]. In this light there appears justified the increasing interest in the synthesis and characterization of metal-CO₂ complexes and the attempts to put light on the mode of bonding of CO_2 .

We have recently reported the synthesis and properties of Ni(CO₂)(PCy₃)₂·0.75 C₇H₈ (characterized crystallographically [2a]) and of a few other Ni(0) complexes [2b]. This report concerns the synthesis and properties of some Rhodium(I)-CO₂ complexes of formula RhCl(CO₂)L₃ (class A) and RhCl(CO₂)L₂ (class B) (L = PR_nPH_{3-n}) obtained either by reaction of $[RhCl(C_2H_4)_2]_2$ with the phosphorous ligand in toluene (or other hydrocarbon solvents) under CO₂ or by reaction of RhClL₃ with CO₂ either in solution (toluene, benzene, pentane) or in the solid state. $[RhCl(C_2H_4)_2]_2$ (I) in toluene at room temperature reacts with 2 equiv. of PBu_3^n under CO_2 (1 atm) to give a low melting red-orange solid analyzing for $RhCl(CO_2)(PBu_3^n)_2$ (II) [3]. This compound shows in its i.r. spectrum two intense bands at 1668 and 1630 cm⁻¹ attributable to ν (C=O) and bands at 1165 and 1120 cm⁻¹ due to v_{asym} and v_{sym} (C–O) respectively [4]. The same compound is obtained when a pentane solution of RhClL₃ (from I and 6 equiv. of PBu₃ⁿ in benzene under nitrogen [5]) is exposed to 1 atm of CO_2 at room temperature. The ν (C=O) i.r. bands for II are at 1665(s) and 1627(s) cm⁻¹ in a freshly prepared CH₂Cl₂ solution. On standing the i.r. spectrum shows the appearance of a new strong band at 1958 cm⁻¹ due to a Rh(I) carbonyl species [6] and strong bands at 1147 and 1092 cm⁻¹ due to the coordinated phosphine oxide formed according to:

$$RhCl(CO_2)L_2 \rightarrow RhCl(CO)(OL)L$$
 (1)

II exposed to the air converts into the bis(phosphineoxide)(1) complex ($\nu P=0$ at 1227(s), 1145(s), 1095(s) cm⁻¹] and CO₂ is retained. I with 6 equiv. of PEtPh₂ under CO₂ affords the yellow RhCl(CO₂)L₃ [3] (III; $\nu C=0$ at 1675vs and 1625w,sh cm⁻¹), which in the solid state releases CO₂ upon pumping *in vacuo* (90% of the CO₂ given off in 10 hours at room temperature). The CO₂ loss is complete in a short time when III is crystallized from benzene/pentane under nitrogen. Working with a ligand to metal molar

ratio equal to two a pale yellow complex analysing for RhCl(CO₂)L₂ [3] is obtained (ν C=O at 1655vs and 1625vs cm⁻¹), which is much more stable to pumping in the solid state. Similarly I with PEt₂Ph (6 equiv.) in toluene under CO₂ affords the orange RhCl(CO₂)L₃ [3] (ν C=O at 1670vs, 1635sh, 1255m, 963m, 780m cm⁻¹) while with 4 equiv. of the phosphorous ligand RhCl(CO₂)L₂ [3] is obtained showing bands due to the co-ordinated CO₂ at 1658vs, 1620vs, 1238m, 827m cm⁻¹.

Analogous complexes are obtained with PMe_2Ph [RhCl(CO₂)L₂, red, CO₂ bands at 1657vs, 1627vs, 1217m, 996m, 823m cm⁻¹] and PMePH₂ [RhCl-(CO₂)L₃, CO₂ bands at 1673vs, 1635sh, 1290m, 1000m, 822m, 760m cm⁻¹]. All the complexes lose CO₂ when treated with H₂SO₄ or when heated at temperatures above 80 °C.

The different spectra for class A and class B complexes can be tentatively explained assuming a different way of co-ordination for the CO_2 ligand. In class A complexes [pentacoordinate Rh(I)] CO_2 could be monodentate and in class B complexes it could be bidentate:

Such a picture has been proposed by us [2b] to explain the differences in the spectroscopic properties of $P_3Ni(CO_2)$ and $P_2Ni(CO_2)$ complexes. Similarly Herskovitz [7] proposes that CO_2 in [Ir(diars)-(CO₂)]Cl (diars = *o*-phenylenebis(dimethylarsine)] is bonded through the carbon atom (A class [8]; CO₂ i.r. bands at 1550 and 1220 cm⁻¹).

The noticeable difference of $\nu(CO)$ between the pentaco-ordinate Ir(I) (1550 cm⁻¹) and Rh(I) (about 1670 cm⁻¹) complexes can be explained taking into account that the lower energy of the Ir(I) d orbitals [with respect to Rh(I)] can allow a greater π -bond back donation from the metal d orbitals to antibonding $2\pi_{\rm u}$ CO₂ [9] orbitals, thus reducing more effectively the CO₂ bond order. The important role played by the d orbitals energy is also demonstrated by the scarce tendency of the $[Rh(L_2)_2]^+$ moiety to bound CO_2 [7] under the same conditions as $[Ir(L_2)_2]^*$. The basicity and bulkiness of the phosphorous ligands, their π -acceptor character, the geometry of the complexes, the trans-effect of the trans-to-CO₂ ligands, can barely affect the stability of the CO2-metal bond. Although at the moment it is difficult to make

any definite correlation between bond order reduction of the co-ordinate CO_2 and strength of the metal- CO_2 bond, it appears to us that in the case of the class A Rh(I) complexes all those factors can make the CO_2 more loosely bonded than in the class B complexes, which retain CO_2 also in polar solvents such as acetone, CH_2Cl_2 , ethanol [10].

Further studies are in progress on the reactivity of the complexes.

Acknowledgement

The Authors thank the C.N.R., Rome for financial support and Miss R. Micera for experimental assistance.

References

- For a recent review see: M. E. Vol'pin and I. S. Kolomnikov, Organometallic Reactions, 5, 313 (1975).
 b- T. Herskovitz and L. Guggenberger, J. Am. Chem.
- Soc., 98, 1615 (1976).

- 2 a) M. Aresta, C. F. Nobile, V. G. Albano, E. Forni, M. Manassero, *Chem. Comm.*, 636 (1975).
 b) M. Aresta and C. F. Nobile, *J. Chem. Soc. Dalton*, 708
- (1977).3 C, H, Cl, P analyses agree with the proposed formula.
- 4 Unless otherwise stated the v values are intended for
- Nujol mult through the whole paper. 5 M. Aresta and A. Sacco, Report to the, "Convegno sui
- Composti di Coordinazione", C.N.R., Rome, 17-19 April (1967).
- 6 RhCl(CO)(PBu₃ⁿ)₂ presents the ν (C=O) band at 1957 cm⁻¹, ref. 5.
- 7 T. Herskovitz, J. Am. Chem. Soc., 99, 2391 (1977).
- 8 The similar complex Ir(dmpe)₂Cl·CO₂ [7] displays bands at 1550 and 1230 cm⁻¹.
- 9 The CO₂-metal σ -bond should be formed by transfer of electrons density from a filled CO₂ π -orbital (one of the filled $1\pi_g$ anti-bonding orbitals) to one of the empty d, s, p metal orbitals (probably a dsp^3 hybrid). This bond should strengthen the C-O bond and, thus, the back π -bonding from the filled metal orbitals to the antibonding $2\pi_u$ orbitals plays an important role in CO₂ bond-order reduction.
- 10 As reported above in such polar solvents oxygen-transfer to the phosphine occurs. Such a tendency is more pronounced with the more basic phosphines in the order PPh₂Et ≅ PPh₂Me < PPhEt₂ ≅ PPhMe₂ < PBuⁿ₃.