Carbon Dioxide-Transition Metals Complexes. III. Rhodium(I)-C02 Complexes

M. ARESTA and C. F. NOBILE

Istituto di Chimica Generale ed Inorganica, Um'versitli, Via Amendola 173, Bari 70126, Italy Received July 4,1977

Carbon dioxide activation via direct co-ordination to metal complexes can represent a way to $CO₂$ fixation **[l] .** In this light there appears justified the increasing interest in the synthesis and characterization of metal- $CO₂$ complexes and the attempts to put light on the mode of bonding of $CO₂$.

We have recently reported the synthesis and properties of $Ni(CO₂)(PCy₃)₂ \cdot 0.75 C₇H₈$ (characterized crystallographically [2a]) and of a few other Ni(0) complexes [2b]. This report concerns the synthesis and properties of some Rhodium $(I)-CO₂$ complexes of formula RhCl(CO₂)L₃ (class A) and RhCl(CO₂)L₂ (class B) $(L = PR_nPH_{3-n})$ obtained either by reaction of $[RhCl(C_2H_4)_2]_2$ with the phosphorous ligand in toluene (or other hydrocarbon solvents) under $CO₂$ or by reaction of $RhClL₃$ with $CO₂$ either in solution (toluene, benzene, pentane) or in the solid state. $[RhCl(C₂H₄)₂]$ ₂ (I) in toluene at room temperature reacts with 2 equiv. of PBu_3^n under CO_2 (1 atm) to give a low melting red-orange solid analyzing for $RhCl(CO₂)(PBu₃ⁿ)₂$ (II) [3]. This compound shows in its i.r. spectrum two intense bands at 1668 and 1630 cm^{-1} attributable to $\nu(C=O)$ and bands at 1165 and 1120 cm⁻¹ due to ν_{asym} and ν_{sym} (C-O) respectively [4]. The same compound is obtained when a pentane solution of $RhClL₃$ (from I and 6 equiv. of $PBu₃ⁿ$ in benzene under nitrogen [5]) is exposed to 1 atm of $CO₂$ at room temperature. The $\nu(C=O)$ i.r. bands for II are at $1665(s)$ and $1627(s)$ cm⁻¹ in a freshly prepared $CH₂Cl₂$ solution. On standing the i.r. spectrum shows the appearance of a new strong band at 1958 cm^{-1} due to a Rh(I) carbonyl species [6] and strong bands at 1147 and 1092 cm^{-1} due to the coordinated phosphine oxide formed according to:

$$
RhCl(CO2)L2 \rightarrow RhCl(CO)(OL)L
$$
 (1)

II exposed to the air converts into the bis(phosphineoxide)(1) complex $(\nu P=0$ at 1227(s), 1145(s), 1095(s) cm^{-1}] and $CO₂$ is retained. I with 6 equiv. of PEtPh₂ under CO_2 affords the yellow RhCl(CO_2) L_3 [3] (III; ν C=O at 1675 vs and 1625 w, sh cm⁻¹), which in the solid state releases $CO₂$ upon pumping in vacuo (90% of the $CO₂$ given off in 10 hours at room temperature). The $CO₂$ loss is complete in a short time when III is crystallized from benzene/pentane under nitrogen. Working with a ligand to metal molar

ratio equal to two a pale yellow complex analysing for RhCl(CO₂)L₂ [3] is obtained (ν C=O at 1655vs and 1625 ys cm⁻¹), which is much more stable to pumping in the solid state. Similarly I with PEt₂Ph (6 equiv.) in toluene under $CO₂$ affords the orange RhCl(CO₂)L₃ [3] (ν C=O at 1670vs, 1635sh, 1255m, 963m, $780m$ cm^{-1}) while with 4 equiv. of the phosphorous ligand $RhCl(CO₂)L₂$ [3] is obtained showing bands due to the co-ordinated $CO₂$ at 1658vs, 162Ovs, 1238m, 827m cm-'.

Analogous complexes are obtained with $PMe₂Ph$ $[RhCl(CO₂)L₂$, red, $CO₂$ bands at 1657vs, 1627vs, 1217m, 996m, 823m cm⁻¹] and PMePH₂ [RhCl- $(CO₂)L₃$, $CO₂$ bands at 1673vs, 1635sh, 1290m, 1000m, 822m, 760m cm⁻¹]. All the complexes lose $CO₂$ when treated with $H₂SO₄$ or when heated at temperatures above 80 "C.

The different spectra for class A and class B complexes can be tentatively explained assuming a different way of co-ordination for the $CO₂$ ligand. In class A complexes [pentacoordinate $Rh(I)$] $CO₂$ could be monodentate and in class B complexes it could be bidentate:

Such a picture has been proposed by us [2b] to explain the differences in the spectroscopic properties of $P_3Ni(CO_2)$ and $P_2Ni(CO_2)$ complexes. Similarly Herskovitz [7] proposes that $CO₂$ in [Ir(diars)- $(CO₂)$] Cl (diars = o-phenylenebis(dimethylarsine)] is bonded through the carbon atom (A class $[8]$; CO₂ i.r. bands at 1550 and 1220 cm^{-1}).

The noticeable difference of $\nu(CO)$ between the pentaco-ordinate Ir(I) (1550 cm⁻¹) and Rh(I) (about 1670 cm^{-1}) complexes can be explained taking into account that the lower energy of the Ir(1) *d* orbitals [with respect to Rh(I)] can allow a greater π -bond back donation from the metal *d* orbitals to antibonding 2π , CO₂ [9] orbitals, thus reducing more effectively the CO₂ bond order. The important role played by the *d* orbitals energy is also demonstrated by the scarce tendency of the $[Rh(L_2)_2]$ ⁺ moiety to bound $CO₂$ [7] under the same conditions as $[\text{Ir}(L₂)₂]$ ⁺. The basicity and bulkiness of the phosphorous ligands, their π -acceptor character, the geometry of the complexes, the trans-effect of the trans-to- $CO₂$ ligands, can barely affect the stability of the $CO₂$ -metal bond. Although at the moment it is difficult to make any definite correlation between bond order reduction of the co-ordinate $CO₂$ and strength of the metal-CO₂ bond, it appears to us that in the case of the class A Rh(I) complexes all those factors can make the $CO₂$ more loosely bonded than in the class B complexes, which retain $CO₂$ also in polar solvents such as acetone, $CH₂Cl₂$, ethanol [10].

Further studies are in progress on the reactivity of the complexes.

Acknowledgement

The Authors thank the C.N.R., Rome for financial support and Miss R. Micera for experimental assistance.

References

- 1 For a recent review see: M. E. Vol'pin and I. S. Kolomnikov, *Organometallic Reactions, 5, 3 13* (1975). b- T. Herskovitz and L. Guggenberger, J. *Am.* Chem.
- Soc., 98, 1615 (1976).
- a) M. Aresta, C. F. Nobile, V. G. Albano, E. Forni, M. Manassero, *Chem. Comm., 636* (1975). b) M. Aresta and C. F. Nobile, J. *Chem. Sot. Dalton, 708*
- (1977).
- C, H, Cl, P analyses agree with the proposed formula.
- Unless otherwise stated the ν values are intended for 4 Nujol mull through the whole paper.
- M. Aresta and A. Sacco, Report to the, "Convegno sui Composti di Coordinazione", C.N.R., Rome, 17-19 April (1967).
- $RhCl(CO)(PBu_3^2)$ presents the $\nu(C=O)$ band at 1957 ref. 5.
- T. Herskovitz, *J. Am. Chem. Soc.*, 99, 2391 (1977). τ
- The similar complex $Ir(dmpe)_2Cl·CO_2$ [7] displays 8
- bands at 1550 and 1230 cm^{-1} 9 The CO₂-metal σ -bond should be formed by transfer of electrons density from a filled CO_2 π -orbital (one of the illed $1\pi_{\rm g}$ anti-bonding orbitals) to one of the empty , s, p metal orbitals (probably a $dsp³$ hybrid). This bond should strengthen the C-O bond and, thus, the back π bonding from the filled metal orbitals to the antibonding 2π _u orbitals plays an important role in CO₂ bond-order reduction.
- 10 As reported above in such polar solvents oxygen-transter to the phosphine occurs. Such a tendency is more pronounced with the more basic phosphines in the order $PPh_2Et \cong PPh_2Me < PPhEt_2 \cong PPhMe_2 < PBu_3^n$.